Reduced models of networks of coupled enzymatic reactions.

نویسندگان

  • Ajit Kumar
  • Krešimir Josić
چکیده

The Michaelis-Menten equation has played a central role in our understanding of biochemical processes. It has long been understood how this equation approximates the dynamics of irreversible enzymatic reactions. However, a similar approximation in the case of networks, where the product of one reaction can act as an enzyme in another, has not been fully developed. Here we rigorously derive such an approximation in a class of coupled enzymatic networks where the individual interactions are of Michaelis-Menten type. We show that the sufficient conditions for the validity of the total quasi-steady state assumption (tQSSA), obtained in a single protein case by Borghans, de Boer and Segel can be extended to sufficient conditions for the validity of the tQSSA in a large class of enzymatic networks. Secondly, we derive reduced equations that approximate the network's dynamics and involve only protein concentrations. This significantly reduces the number of equations necessary to model such systems. We prove the validity of this approximation using geometric singular perturbation theory and results about matrix differentiation. The ideas used in deriving the approximating equations are quite general, and can be used to systematize other model reductions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modeling Networks of Coupled Enzymatic Reactions Using the Total Quasi-Steady State Approximation

In metabolic networks, metabolites are usually present in great excess over the enzymes that catalyze their interconversion, and describing the rates of these reactions by using the Michaelis-Menten rate law is perfectly valid. This rate law assumes that the concentration of enzyme-substrate complex (C) is much less than the free substrate concentration (S0). However, in protein interaction net...

متن کامل

Applicability of Importance Sampling to Coupled Molecular Reactions

Importance Sampling is a variance reduction technique possessing the potential of zero-variance estimators in its optimal case. It has been successfully applied in a variety of settings ranging from Monte Carlo methods for static models to simulations of complex dynamical systems governed by stochastic processes. We demonstrate the applicability of Importance Sampling to the simulation of coupl...

متن کامل

Michaelis-Menten relations for complex enzymatic networks.

Most biological processes are controlled by complex systems of enzymatic chemical reactions. Although the majority of enzymatic networks have very elaborate structures, there are many experimental observations indicating that some turnover rates still follow a simple Michaelis-Menten relation with a hyperbolic dependence on a substrate concentration. The original Michaelis-Menten mechanism has ...

متن کامل

Global stability of reversible enzymatic metabolic chains.

We consider metabolic networks with reversible enzymatic reactions. The model is written as a system of ordinary differential equations, possibly with inputs and outputs. We prove the global stability of the equilibrium (if it exists), using techniques of monotone systems and compartmental matrices. We show that the equilibrium does not always exist. Finally, we consider a metabolic system coup...

متن کامل

Coupled chemo(enzymatic) reactions in continuous flow

This review highlights the state of the art in the field of coupled chemo(enzymatic) reactions in continuous flow. Three different approaches to such reaction systems are presented herein and discussed in view of their advantages and disadvantages as well as trends for their future development.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of theoretical biology

دوره 278 1  شماره 

صفحات  -

تاریخ انتشار 2011